翻訳と辞書 |
Vitali convergence theorem : ウィキペディア英語版 | Vitali convergence theorem In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a strong condition that depends on uniform integrability. It is useful when a dominating function cannot be found for the sequence of functions in question; when such a dominating function can be found, Lebesgue's theorem follows as a special case of Vitali's. ==Statement of the theorem== Let be a positive measure space. If # # is uniformly integrable # a.e. as and # a.e. then the following hold: # #.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Vitali convergence theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|